
F5. Background Processing (Advanced)
    This topic discusses how to arrange your program code to support processing that is to 
occur in the "background" while other, more visible, tasks are performed.    FaceIt and 
ViewIt's handling of most low-level events makes it easy to support such background 
processing.
    Background processes typically take one of two forms:    those that are called when no 
other events need processing (Event- Oriented), versus those that periodically allow some 
events to be processed while they are being executed (Task-Oriented).    Each type is 
discussed below, although most of the discussion is devoted to task-oriented processing 
since this is more difficult to set up.    Also note that both types support processing while a 
program is in the background under MultiFinder or System 7 as long as the program includes
a SIZE resource with its "Can background" bit set (see "Finder Resources" for more info on 
SIZE resources).

Event-Oriented
    This type of background processing is easier to set up but is not well-suited to large, time-
consuming routines that are not easily interrupted.    Precedence in this case is given to 
handling all (or most) user-generated events, with the background task getting a limited 
amount of time whenever no other events need handling.    Programs can get such "idle" 
time in one of 2 ways:
 - Call DoLoop with a = -2 or MdlWnd with b = -2 to have these commands return control 
when no events need processing.    See the description of these commands in the "Program" 
and "Window Commands" topics for further info.
 - Add a control to a ViewIt window that has its "Hook" message option checked (in Control 
dialog), and override the control to intercept the hook messages (uCommand = 259) which 
are posted if no other events need handling.    See "Override" topic in the ViewIt guide for 
more info about overriding controls.
    The "Nested Modal Window" in the "vDemoXY" program, for example, contains an icon 
whose appearance is changed after a fixed number of ticks.    This animation is supported by 
calling MdlWnd with b = -2 so that the program is given time to do this action when no other
events need handling.

Task-Oriented
    When executing large, complex, time-consuming routines, you will typically want to 
provide minimal interface-related support in a way that does not require a major rewrite of 
your existing routines (i.e., you would like windows updated, time given to other 
applications, and switching to occur properly, but are not interested in handling user menu 
selections and window hits).    FaceIt's DoEvnt command was designed to help provide this 
minimal interface-related support with minimal programming effort.

• Getting Events
    The trick to providing minimal interface support during the execution of a time-consuming 
routine is to add GetNextEvent (or WaitNextEvent) calls to the routine, and then deal 
properly with the results of these calls.    The tricky part of this is in determining how often to
call GetNextEvent.    If GetNextEvent is called too often, then your processing will be 
unnecessarily slowed.    But if you make too few calls to GetNextEvent, then the top 
application will appear sluggish when your routine is being executed in the background 
under MultiFinder or System 7.
    The simplest solution to the question of how often to call GetNextEvent (or WaitNextEvent)
to support background processing is to make the call after a fixed number of loops or ticks 
(1/60 seconds) have elapsed.    In many cases the task will involve a loop within which you 
can place a GetNextEvent call.    But rather than slowing things down by calling 
GetNextEvent every time through the loop, you should instead check a loop index and/or the
current tick count (returned by TickCount) to determine whether it is time to call 



GetNextEvent.
    When determining whether GetNextEvent should be called, you can also make this a 
function of whether or not you are running under MultiFinder, and whether or not the user 
really wants to sacrifice processing speed to support background processing.    The shared 
variable fEnvFlags will have its second bit set if MultiFinder memory allocation routines are 
implemented (still a good indicator of whether MultiFinder is in use - see the "fRec Record" 
topic under "Commands" for more info about fEnvFlags).    An example of "task-oriented" 
background processing is presented in the fDemoXY program.

• Update & Switch
    If all you had to do to support background processing was to decide where and when to 
call GetNextEvent or WaitNextEvent, then FaceIt wouldn't have much to do with it.    The 
potential programming nightmare, however, comes not in making these calls, but rather in 
dealing with the Update or SuspendResume (switching) events that your program can be fed
while you are deep in your code doing some serious work.    Obviously, you haven't written 
that code to deal with Update or SuspendResume events!    That's where FaceIt comes to the
rescue.    When you get such an event, you just pass it to FaceIt via DoEvnt to tell it to handle
the event.    These events usually arise if windows from another application are moved over 
your program windows, and when the user attempts to switch between applications.
    The following Pascal code fragment illustrates how simple FaceIt makes your handling of 
Update and SuspendResume events.    The example code checks whether GetNextEvent 
should be called based upon a loop counter, "i", and upon a flag, "doBack", which could be 
either user-defined and/or made a function of the environment you are running under.    If 
GetNextEvent returns true, and the event is not an event that your program wishes to 
handle, then FaceIt is called to handle the event.    The event record gets passed to FaceIt via
the fEvent variable in fRec.
 ...
 if doBack then
    if (i mod 50 = 0) then
      if GetNextEvent(-1, fEvent) then
        FaceIt(nil,DoEvnt,0,0,0,0);
 ...
Note that this code works equally well whether the program is the front application or is in 
the background.    In general, your program does not need to be aware of whether it is in the 
foreground or background, switched in or switched out.    (If you do find a reason for needing 
to know this, check fRec variable fSleep.    If fSleep = fBackSleep, then you are operating in 
the background.)
      Although the exact logic that surrounds a GetNextEvent call will depend entirely on your 
programming objectives, the overall approach is always the same:    a decision is made 
whether or not to call GetNextEvent based on some program, user, and/or environmental 
condition, GetNextEvent gets called, and all events returned that your program does not 
wish to handle are passed to FaceIt via DoEvnt.

• Other Events
    The flip side of using GetNextEvent (or WaitNextEvent) to support background processing 
is that this call cannot be used for other purposes (such as checking if a key was hit or 
button pressed) without also checking for Update and SuspendResume events.    This means 
that you must either (a) always check for Update & SuspendResume events after calling 
GetNextEvent, or (b) find a way to avoid using GetNextEvent when you don't want other 
apps to get background time, nor any switching to occur.

The first approach uses GetNextEvent in a manner like that shown above, but adds one or 
more statements that check for some other event of interest.    A typical use of this approach
is to support exiting a time-consuming routine, and a simple event to watch for is an autokey
(5) event which occurs when the user holds a key down:



 if GetNextEvent(-1, fEvent) then
    if (fEvent.what = 5) then
      [exit time-consuming routine]
    else
      FaceIt(nil,DoEvnt,0,0,0,0);
This approach works well when your primary purpose for calling GetNextEvent is to support 
background processing.
    The second approach, that of avoiding GetNextEvent calls, makes use of toolbox calls such
as Button or GetKeys to directly check for mouse clicks or key presses without ever calling 
GetNextEvent.    This approach is better suited for cases where you are mainly interested in 
the event, and not in supporting background processing.    When the desired state is 
detected, a FlushEvents call should also be made to remove the event from the event queue
so that it does not get processed again by FaceIt.    A simple use of Button is shown here, and
the example program fDemoXY demonstrates the use of GetKeys.
 if Button then
    begin
      FlushEvents(62,0); remove spurious events
      [exit time-consuming routine]
    end
where the use of "62" when calling FlushEvents removes all mouse and key events that may 
have accumulated in the event queue.

• WaitNextEvent?
    GetNextEvent is equivalent to calling WaitNextEvent with a sleep parameter of zero.    Zero
sleep is, in many cases, a reasonable value to use when the program is in the process of 
doing some computationally-intensive operation:    you're either in the background at the 
mercy of other applications for processing time, and willing to take all the time you can get, 
or you're in the foreground in a time-consuming routine that you want to get through as 
quickly as possible.    Thus GetNextEvent works as well as WaitNextEvent for typical uses of 
background processing.
    The time when it makes sense to use a larger sleep value is when your program is in its 
main event loop, just waiting for an event to occur.    But that is FaceIt's job!    So FaceIt uses 
WaitNextEvent in its own event loop, passing it a sleep value equal to fFrontSleep when in 
the foreground, or fBackSleep when in the background (which have default values of 6 and 
8, respectively).

Combinations
    The event- and task-oriented types of background processing represent extremes.    Either 
the task is given time only after all other events are handled, or the task restricts the events 
that are handled until it is completed.    You can also combine these approaches to get full 
event handling within a time-consuming routine, although this will probably make your 
program code more complex, and it will take longer to complete the task.
    To combine the event- and task-oriented approaches, isolate your main event loop in 
which DoLoop is called in a separate routine that can be called from other places in your 
program.    Then add calls to this main event loop routine in the same way that you would 
add calls to Get/WaitNextEvent to support task oriented processing.    Modifying the above 
example:
 ...
 if doBack then
    if (i mod 50 = 0) then
      MyLoop;
 ...
where "MyLoop" is the name of the routine that calls DoLoop and handles messages from it. 
The call to DoLoop should return control when no other events need processing (a = -2), 
which in turn should cause "MyLoop" to return control to the task:
 procedure MyLoop;



 ...
 repeat
    FaceIt(nil,DoLoop,-2,0,0,0);
    if (uMenuID = 0) and (fEvent.what = 0) then
      exit(MyLoop)
    else
      [handle user-generated events]
 until false;
 ...
    Similar code could be written to support event handling when a task was being performed 
while a modal window was open.    In this case, calls to MdlWnd (or a routine that called 
MdlWnd) would be placed within the time-consuming routine.
    These examples illustrate the range of background processing options that FaceIt 
supports.    Which option you choose to use will depend on the nature of the task and the 
importance placed on supporting user interaction during execution of the task.


